Melville, NY- based BioRestorative Therapies, Inc. (“BRTX”, “The Company”) develops therapeutic products and medical therapies using cell and tissue protocols, primarily involving adult stem cells.

- Focused on Cell Therapies to Treat Disc/Spine Disorders and Metabolic Diseases
- High Level of Expertise in Developing Proprietary Biologics
- Strong Skills in Cell Biology /Cell Culturing
- Disc Phase II Clinical Trial Expected 2016
- Strong IP Portfolio: Novel Science and Further Licensing Opportunities
- Management/Scientific Teams with Experience in Biologics, Cell Therapies, Regulatory Aspects, Public Companies, Clinical Trials and “Lab to Bedside” Medicine
- Research Collaboration with Pfizer

MULTIPLE CELL THERAPY PROGRAMS:

Disc/Spine Therapy to Treat Chronic Lumbar Disc Disease (Bulging and Protruding Discs)

- **Single Injection** Non-Surgical Autologous Biologic (30 Minute Outpatient Procedure)
- Phase II Clinical Trial Anticipated by 4Q 2016 – Initial Successful Pre-IND Meeting with FDA
- Initial Promising HUMAN Data from Investigational Treatment in US
- Near-Term Catalyst Event – Reportable Clinical Data Expected 3Q 2017
- Clinical Director- Physical Medicine and Rehabilitation at Hospital for Special Surgery
- Addresses $10B (US Market) Chronic Lower Back Pain with Unmet Medical Need

Treatment of Metabolic Disorders (Diabetes, Obesity, Hyperlipidemia)

- Pre-Clinical Program for the Treatment of Metabolic Disorders Using Brown Adipose-Derived Stem Cells
- Established a Substantial, Unique Human Brown Fat Library
- Finalize Clinical Indication and Delivery Mechanism and Drive to IND Filing
- Pfizer and UPenn Collaborations
- Company Published (and highlighted on cover) in Leading STEM CELLS Journal in 2014

February 2016
DISC/SPINE PROGRAM

Our lead cell therapy candidate, BRTX-100, is a product formulated from autologous (or a person's own) cultured mesenchymal stem cells collected from the patient's bone marrow. We intend that the product will be used for the non-surgical treatment of protruding and bulging lumbar discs in patients suffering from chronic lumbar disc disease. The treatment involves collecting a patient’s own stem cells, culturing and cryopreserving the cells, and then having a physician inject BRTX-100 into the patient's damaged disc in a contemplated 30 minute outpatient office procedure. The treatment is indicated for patients, to improve function and decrease pain, who potentially face the prospect of surgery. We plan to file an investigational new drug, or IND, application with the Food and Drug Administration, or the FDA, with regard to BRTX-100 and intend to commence clinical trials using BRTX-100 and its related collection and delivery procedure by the third quarter of 2016.

BioRestorative Therapies’ procedure is intended to offer a much-needed alternative to back surgery by addressing the large gap that currently exists in disc treatments between non-invasive and invasive surgical procedures. Not only could this program potentially eliminate surgery in many cases, but it could also provide a substantially more effective treatment than current non-invasive therapies with a design to be curative.

METABOLIC PROGRAM

We are developing a cell-based therapy to target metabolic disorders and obesity using brown adipose (“brown fat”) derived stem cells to generate brown adipose tissue, or BAT. This pre-clinical program involves the use of a cell-based (brown adipose tissue) treatment for metabolic disease, such as type 2 diabetes, obesity, hypertension and other metabolic disorders and cardiac deficiencies. We are engaging in pre-clinical research efforts with respect to a platform technology utilizing BAT for therapeutic purposes and have labeled this initiative our ThermoStem® Program. BAT is a specialized adipose tissue found in the human body that plays a key role in the evolutionarily conserved mechanisms underlying thermogenesis (generation of non-shivering body heat) and energy homeostasis in mammals - long known to be present at high levels in hibernating mammals and human newborns. Our intent is to mimic the naturally occurring biology that regulates metabolic homeostasis in humans by implanting a specific population of brown adipose cells designed to impact body metabolism. Initial preclinical research indicates that increased amounts of brown fat in the body may be responsible for additional caloric burning as well as reduced glucose and lipid levels. Researchers have found that people with higher levels of brown fat may have a reduced risk for diabetes and obesity. In March 2014, we entered into a Research Agreement with Pfizer, Inc., a global pharmaceutical company, pursuant to which we have been engaged to provide research and development services with regard to a joint study of the development and validation of a human brown adipose (fat) cell model. A United States patent related to the ThermoStem® Program issued in September 2015.

FOR MORE INFORMATION:

Mark Weinreb, CEO
BioRestorative Therapies, Inc.
Phone: 631-760-8100
E: mweinreb@biorestorative.com

Forward-Looking Statements

This corporate profile contains “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including those set forth in the Company’s filings with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this profile are made as of the date hereof and the Company undertakes no obligation to update such statements.

February 2016